General Certificate of Education (A-level) January 2013

Mathematics
MM1B

(Specification 6360)

Mechanics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1B

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & 5900 \times 0.2=2500-800-R \\ & (R=) 2500-1180-800=520 \mathrm{~N} \end{aligned}$	M1A1 A1	3	M1: Equation of motion for tractor and trailer as a single particle, with 2500 , 800, R (which might be implied by seeing 1180 and 1700 or 1180 and 3300) and 5900×0.2 OE, with any signs. A1: Correct equation. A1: Correct R. If tension found first, do not award any marks until an equation for R is obtained. Award M1 for $3500 \times 0.2= \pm 2500 \pm R \pm 1280$.
(b)	$\begin{aligned} & T-800=2400 \times 0.2 \\ & (T=) 800+480=1280 \mathrm{~N} \end{aligned}$ OR	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$	3	M1: Equation for trailer with 2400 and 800. A1: Correct equation. A1: Correct tension.
	$\begin{aligned} & 3500 \times 0.2=2500-520-T \\ & (T=) 2500-700-520=1280 \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { (M1A1F) } \\ \text { (A1F) } \end{gathered}$	(3)	M1: Equation for tractor with 3500, 2500 and 520. A1F: Correct equation. A1F: Correct tension. Follow through incorrect R from part (a). If the tension has been found in part (a) it only needs to be stated here.
(c)	1280 N	B1F	1	B1F: Same answer as part (b). Do not accept -1280
	Total		7	
5	Case 1: where 0.6 is taken as positive $\begin{aligned} & 5 \times 4-4 \times 3=5 \times 0.6+4 v \\ & 8=3+4 v \\ & v=1.25 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Case 2: where 0.6 is taken as negative $\begin{aligned} & 5 \times 4-4 \times 3=5 \times(-0.6)+4 v \\ & 8=-3+4 v \\ & v=2.75 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1A1 A1 M1A1 A1	6	M1: Conservation of momentum, with left hand side as $5 \times 4 \pm 4 \times 3$. A1: Correct equation ($8=3+4 v \mathrm{OE}$). A1: Correct speed (1.25). M1: Seeing one of $8=-3 \pm 4 v$ or $\begin{aligned} & -8=3 \pm 4 v \text { or } 32=-3 \pm 4 v \text { or } \\ & -32=3 \pm 4 v \text { OE } \end{aligned}$ A1: Seeing ± 2.75 or $\pm \frac{11}{4}$ A1: Correct speed. Accept $\frac{11}{4}$ If $m g$ used consistently instead of m deduct one mark, to give a maximum of 5 marks.
	Total		6	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 6(a)

(b) \& \begin{tabular}{l}
$\tan \alpha=\frac{4}{3}$ or $\cos \alpha=\frac{3}{5}$ or $\sin \alpha=\frac{4}{5}$ $\alpha=53.1^{\circ}$

AG
$$
\begin{aligned}
& 4^{2}=3^{2}+v^{2}-2 \times 3 \times v \times \cos (180-53.1 \ldots) \\
& v^{2}+3.6 v-7=0 \\
& v=1.40 \text { or } v=-5.00 \\
& v=1.40 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

OR
$$
\frac{\sin (180-53.13)}{4}=\frac{\sin \theta}{3}
$$
$$
\theta=36.87^{\circ}
$$
$$
180-36.87-126.87=16.26^{\circ}
$$
$$
\begin{aligned}
& \frac{v}{\sin 16.26^{\circ}}=\frac{4}{\sin (180-53.13)} \text { OR } \frac{3}{\sin 36.87^{\circ}} \\
& v=1.40 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

 \&

A1

dM1

A1

(B1)

(M1A1)

(A1)

(dM1)

(A1)

 \& 2 \&

M1: Trig equation to find the angle with:

cos with 3 or 4 in the numerator and 5 in denominator sin with 3 or 4 in the numerator and 5 in denominator tan with 3 and 4 in any position A1: Correct angle from correct working. (Allow $90-36.9=53.1^{\circ}$). Final answer must be 53.1

Note, for example, $\tan ^{-1} \frac{4}{3}=53.1$ scores M1A1

(Note: diagram not needed for the award of marks)

B1: For seeing $180-53.1$ ($=126.9$).

M1: Using cosine rule with $3,4, v$ and any angle. Must see v and v^{2}.

A1: Correct equation.

A1: Correct simplified quadratic.

dM 1 : Solving the quadratic.

A1: Selecting positive root. (Can be implied.) Accept 1.4 or 1.39

B1: For seeing $180-53.1$ (= 126.9).

M1: Using sine rule with 3, 4 and 126.9°.

A1: Correct equation.

A1: For finding 16.26. Accept 16.3 or 16.2 or 16.26

dM1: Second application of sine rule with v and 3 or 4 with at least one correct angle.

A1: Correct velocity. Accept 1.4 or 1.39.

Note: the result below can be proved. $v=4 \sin \alpha-3 \cos \alpha$

SC4: seeing $4 \sin \alpha-3 \cos \alpha$ with incorrect answer.

SC6: seeing $4 \sin \alpha-3 \cos \alpha$ with answer as 1.4 or 1.39 .
\end{tabular}

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
8(a)	$\left(V_{H}=\right) \frac{38.4}{2.4}=16 \mathrm{~m} \mathrm{~s}^{-1}$	M1A1	2	M1: Horizontal range divided by time. A1: Correct speed.
(b)	$\begin{aligned} & 3=V_{V} \times 2.4-\frac{1}{2} \times 9.8 \times 2.4^{2} \\ & V_{V}=\frac{3+28.224}{2.4}=13.01 \end{aligned}$	M1A1 A1		M1: Equation to find the vertical component, with $s= \pm 3, t=2.4$ and $a= \pm g$ or ± 9.8 or ± 9.81.
	$V=\sqrt{13.01^{2}+16^{2}}=20.6 \mathrm{~m} \mathrm{~s}^{-1}$	dM1A1	5	A1: Correct equation with g or 9.8 or ± 9.81. A1: Correct vertical component. Accept AWRT 13. dM1: Finding speed using their answer from part (a) and their vertical component. A1:Correct final speed. Accept AWRT 20.6.
(c)	$\begin{aligned} & \tan \alpha=\frac{13.01}{16} \text { or } \sin \alpha=\frac{13.01}{20.6} \text { or } \cos \alpha=\frac{16}{20.6} \\ & \alpha=39.1^{\circ} \end{aligned}$	$\begin{gathered} \text { M1A1F } \\ \text { A1F } \end{gathered}$	3	M1: Trig equation to find the angle with: cos with 13 or 16 in the numerator and 20.6 in denominator \sin with 13 or 16 in the numerator and 20.6 in denominator tan with 13 and 16 in any position A1F: Correct equation. A1F: Correct angle. Accept AWRT 39°
				Follow through incorrect answers to part (a) and (b), provided their speed from (b) is the resultant of two components.
	Total		10	
	TOTAL		75	

